Sim

Guardrails

The Guardrails block validates and protects your AI workflows by checking content against multiple validation types. Ensure data quality, prevent hallucinations, detect PII, and enforce format requirements before content moves through your workflow.

Guardrails Block

Overview

The Guardrails block enables you to:

Validate JSON Structure: Ensure LLM outputs are valid JSON before parsing

Match Regex Patterns: Verify content matches specific formats (emails, phone numbers, URLs, etc.)

Detect Hallucinations: Use RAG + LLM scoring to validate AI outputs against knowledge base content

Detect PII: Identify and optionally mask personally identifiable information across 40+ entity types

Validation Types

JSON Validation

Validates that content is properly formatted JSON. Perfect for ensuring structured LLM outputs can be safely parsed.

Use Cases:

  • Validate JSON responses from Agent blocks before parsing
  • Ensure API payloads are properly formatted
  • Check structured data integrity

Output:

  • passed: true if valid JSON, false otherwise
  • error: Error message if validation fails (e.g., "Invalid JSON: Unexpected token...")

Regex Validation

Checks if content matches a specified regular expression pattern.

Use Cases:

  • Validate email addresses
  • Check phone number formats
  • Verify URLs or custom identifiers
  • Enforce specific text patterns

Configuration:

  • Regex Pattern: The regular expression to match against (e.g., ^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$ for emails)

Output:

  • passed: true if content matches pattern, false otherwise
  • error: Error message if validation fails

Hallucination Detection

Uses Retrieval-Augmented Generation (RAG) with LLM scoring to detect when AI-generated content contradicts or isn't grounded in your knowledge base.

How It Works:

  1. Queries your knowledge base for relevant context
  2. Sends both the AI output and retrieved context to an LLM
  3. LLM assigns a confidence score (0-10 scale)
    • 0 = Full hallucination (completely ungrounded)
    • 10 = Fully grounded (completely supported by knowledge base)
  4. Validation passes if score ≥ threshold (default: 3)

Configuration:

  • Knowledge Base: Select from your existing knowledge bases
  • Model: Choose LLM for scoring (requires strong reasoning - GPT-4o, Claude 3.7 Sonnet recommended)
  • API Key: Authentication for selected LLM provider (auto-hidden for hosted/Ollama models)
  • Confidence Threshold: Minimum score to pass (0-10, default: 3)
  • Top K (Advanced): Number of knowledge base chunks to retrieve (default: 10)

Output:

  • passed: true if confidence score ≥ threshold
  • score: Confidence score (0-10)
  • reasoning: LLM's explanation for the score
  • error: Error message if validation fails

Use Cases:

  • Validate Agent responses against documentation
  • Ensure customer support answers are factually accurate
  • Verify generated content matches source material
  • Quality control for RAG applications

PII Detection

Detects personally identifiable information using Microsoft Presidio. Supports 40+ entity types across multiple countries and languages.

How It Works:

  1. Scans content for PII entities using pattern matching and NLP
  2. Returns detected entities with locations and confidence scores
  3. Optionally masks detected PII in the output

Configuration:

  • PII Types to Detect: Select from grouped categories via modal selector
    • Common: Person name, Email, Phone, Credit card, IP address, etc.
    • USA: SSN, Driver's license, Passport, etc.
    • UK: NHS number, National insurance number
    • Spain: NIF, NIE, CIF
    • Italy: Fiscal code, Driver's license, VAT code
    • Poland: PESEL, NIP, REGON
    • Singapore: NRIC/FIN, UEN
    • Australia: ABN, ACN, TFN, Medicare
    • India: Aadhaar, PAN, Passport, Voter number
  • Mode:
    • Detect: Only identify PII (default)
    • Mask: Replace detected PII with masked values
  • Language: Detection language (default: English)

Output:

  • passed: false if any selected PII types are detected
  • detectedEntities: Array of detected PII with type, location, and confidence
  • maskedText: Content with PII masked (only if mode = "Mask")
  • error: Error message if validation fails

Use Cases:

  • Block content containing sensitive personal information
  • Mask PII before logging or storing data
  • Compliance with GDPR, HIPAA, and other privacy regulations
  • Sanitize user inputs before processing

Configuration

Content to Validate

The input content to validate. This typically comes from:

  • Agent block outputs: <agent.content>
  • Function block results: <function.output>
  • API responses: <api.output>
  • Any other block output

Validation Type

Choose from four validation types:

  • Valid JSON: Check if content is properly formatted JSON
  • Regex Match: Verify content matches a regex pattern
  • Hallucination Check: Validate against knowledge base with LLM scoring
  • PII Detection: Detect and optionally mask personally identifiable information

Outputs

All validation types return:

  • <guardrails.passed>: Boolean indicating if validation passed
  • <guardrails.validationType>: The type of validation performed
  • <guardrails.input>: The original input that was validated
  • <guardrails.error>: Error message if validation failed (optional)

Additional outputs by type:

Hallucination Check:

  • <guardrails.score>: Confidence score (0-10)
  • <guardrails.reasoning>: LLM's explanation

PII Detection:

  • <guardrails.detectedEntities>: Array of detected PII entities
  • <guardrails.maskedText>: Content with PII masked (if mode = "Mask")

Example Use Cases

Validate JSON Before Parsing

Scenario: Ensure Agent output is valid JSON

  1. Agent generates structured JSON response
  2. Guardrails validates JSON format
  3. Condition block checks <guardrails.passed>
  4. If passed → Parse and use data, If failed → Retry or handle error

Prevent Hallucinations

Scenario: Validate customer support responses

  1. Agent generates response to customer question
  2. Guardrails checks against support documentation knowledge base
  3. If confidence score ≥ 3 → Send response
  4. If confidence score < 3 → Flag for human review

Block PII in User Inputs

Scenario: Sanitize user-submitted content

  1. User submits form with text content
  2. Guardrails detects PII (emails, phone numbers, SSN, etc.)
  3. If PII detected → Reject submission or mask sensitive data
  4. If no PII → Process normally

Validate Email Format

Scenario: Check email address format

  1. Agent extracts email from text
  2. Guardrails validates with regex pattern
  3. If valid → Use email for notification
  4. If invalid → Request correction

Best Practices

  • Chain with Condition blocks: Use <guardrails.passed> to branch workflow logic based on validation results
  • Use JSON validation before parsing: Always validate JSON structure before attempting to parse LLM outputs
  • Choose appropriate PII types: Only select the PII entity types relevant to your use case for better performance
  • Set reasonable confidence thresholds: For hallucination detection, adjust threshold based on your accuracy requirements (higher = stricter)
  • Use strong models for hallucination detection: GPT-4o or Claude 3.7 Sonnet provide more accurate confidence scoring
  • Mask PII for logging: Use "Mask" mode when you need to log or store content that may contain PII
  • Test regex patterns: Validate your regex patterns thoroughly before deploying to production
  • Monitor validation failures: Track <guardrails.error> messages to identify common validation issues

Guardrails validation happens synchronously in your workflow. For hallucination detection, choose faster models (like GPT-4o-mini) if latency is critical.

Guardrails